Expression of invasin and motility are coordinately regulated in Yersinia enterocolitica.
نویسندگان
چکیده
The Yersinia enterocolitica inv gene encodes the primary invasion factor invasin, which has been previously shown to be critical in the initial stages of infection. The expression of inv is influenced by growth phase and temperature and is maximal during late exponential-early stationary phase at 23 degrees C. In addition, motility of Y. enterocolitica is regulated by temperature. Y. enterocolitica cells are motile when grown at lower temperatures (30 degrees C or below), while bacteria grown at 37 degrees C are nonmotile. This study was initiated to determine the molecular basis for the temperature regulation of inv expression. Two mutants were isolated that both showed a significant decrease in invasin expression but are hypermotile when grown at 23 degrees C. The first mutant (JB1A8v) was a result of a random mTn5Km insertion into the uvrC gene. The uvrC mutant JB1A8v demonstrated a significant decrease in inv and an increase in fleB (encodes flagellin) expression. These results suggest that expression of inv and flagellin genes is coordinated at the level of transcription. The second regulatory mutant, JB16v, was a result of a targeted insertion into a locus similar to sspA which in E. coli encodes a stationary-phase regulator. The E. coli sspA gene was cloned and assayed for complementation in both of the regulatory mutants. It was determined that E. coli sspA restored invasin expression in both the uvrC mutant and the sspA mutant. In addition, the complementing clone decreased flagellin levels in these mutants.
منابع مشابه
Motility is required to initiate host cell invasion by Yersinia enterocolitica.
Invasin-mediated invasion of host cells by the pathogen Yersinia enterocolitica was shown to be affected by flagellar-dependent motility. Motility appears to be required to ensure the bacterium migrates to and contacts the host cell. Nonmotile strains of Y. enterocolitica were less invasive than motile strains, but the reduction in invasion could be overcome by artificially bringing the bacteri...
متن کاملH-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA.
Yersinia enterocolitica is able to efficiently invade Peyer's patches with the aid of invasin, an outer member protein involved in the attachment and invasion of M cells. Invasin is encoded by inv, which is positively regulated by RovA in both Y. enterocolitica and Yersinia pseudotuberculosis while negatively regulated by YmoA in Y. enterocolitica and H-NS in Y. pseudotuberculosis. In this stud...
متن کاملYmoA negatively regulates expression of invasin from Yersinia enterocolitica.
inv encodes invasin, which is the primary invasion factor of Yersinia enterocolitica. inv expression in vitro is regulated in response to temperature, pH, and growth phase. In vitro, inv is maximally expressed at 26 degrees C and repressed at 37 degrees C at neutral pH but, when the pH of the media is adjusted to 5.5, levels of inv expression at 37 degrees C are comparable to those at 26 degree...
متن کاملYersinia enterocolitica invasin-dependent and invasin-independent mechanisms of systemic dissemination.
We report here invasin-dependent and invasin-independent mechanisms in which the enteropathogen Yersinia enterocolitica is able to disseminate from the lumen of the small intestine to the spleen. The invasin-dependent route is clearly discernible in mice devoid of intestinal Peyer's patches and mesenteric lymph nodes.
متن کاملOverproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica.
DNA adenine methyltransferase (Dam) not only regulates basic cellular functions but also interferes with the proper expression of virulence factors in various pathogens. We showed previously that for the human pathogen Yersinia enterocolitica, overproduction of Dam results in increased invasion of epithelial cells. Since invasion and motility are coordinately regulated in Y. enterocolitica, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 4 شماره
صفحات -
تاریخ انتشار 1998